SNPs Occur in Regions with Less Genomic Sequence Conservation

نویسنده

  • John C. Castle
چکیده

Rates of SNPs (single nucleotide polymorphisms) and cross-species genomic sequence conservation reflect intra- and inter-species variation, respectively. Here, I report SNP rates and genomic sequence conservation adjacent to mRNA processing regions and show that, as expected, more SNPs occur in less conserved regions and that functional regions have fewer SNPs. Results are confirmed using both mouse and human data. Regions include protein start codons, 3' splice sites, 5' splice sites, protein stop codons, predicted miRNA binding sites, and polyadenylation sites. Throughout, SNP rates are lower and conservation is higher at regulatory sites. Within coding regions, SNP rates are highest and conservation is lowest at codon position three and the fewest SNPs are found at codon position two, reflecting codon degeneracy for amino acid encoding. Exon splice sites show high conservation and very low SNP rates, reflecting both splicing signals and protein coding. Relaxed constraint on the codon third position is dramatically seen when separating exonic SNP rates based on intron phase. At polyadenylation sites, a peak of conservation and low SNP rate occurs from 30 to 17 nt preceding the site. This region is highly enriched for the sequence AAUAAA, reflecting the location of the conserved polyA signal. miRNA 3' UTR target sites are predicted incorporating interspecies genomic sequence conservation; SNP rates are low in these sites, again showing fewer SNPs in conserved regions. Together, these results confirm that SNPs, reflecting recent genetic variation, occur more frequently in regions with less evolutionarily conservation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inbreeding and selection shape genomic diversity in captive populations: Implications for the conservation of endangered species

Captive breeding programs are often initiated to prevent species extinction until reintroduction into the wild can occur. However, the evolution of captive populations via inbreeding, drift, and selection can impair fitness, compromising reintroduction programs. To better understand the evolutionary response of species bred in captivity, we used nearly 5500 single nucleotide polymorphisms (SNPs...

متن کامل

Detection of Genomic Variation by Selection of a 9 Mb DNA Region and High Throughput Sequencing

Detection of the rare polymorphisms and causative mutations of genetic diseases in a targeted genomic area has become a major goal in order to understand genomic and phenotypic variability. We have interrogated repeat-masked regions of 8.9 Mb on human chromosomes 21 (7.8 Mb) and 7 (1.1 Mb) from an individual from the International HapMap Project (NA12872). We have optimized a method of genomic ...

متن کامل

Characterization and identification of cis-regulatory elements in Arabidopsis based on single-nucleotide polymorphism information.

Identifying regulatory elements and revealing their role in gene expression regulation remains a central goal of plant genome research. We exploited the detailed genomic sequencing information of a large number of Arabidopsis (Arabidopsis thaliana) accessions to characterize known and to identify novel cis-regulatory elements in gene promoter regions of Arabidopsis by relying on conservation as...

متن کامل

Genomic islands of divergence and their consequences for the resolution of spatial structure in an exploited marine fish

As populations diverge, genomic regions associated with adaptation display elevated differentiation. These genomic islands of adaptive divergence can inform conservation efforts in exploited species, by refining the delineation of management units, and providing genomic tools for more precise and effective population monitoring and the successful assignment of individuals and products. We explo...

متن کامل

Determination of fucosyltransferase 3 gene polymorphisms frequency in Iranian blood donors

Abstract Background and Objectives The FUT3 gene regulates the expression of Lewis blood group antigens mainly Lea and Leb. The Lewis negative phenotype, is the result of an inactivated FUT3 enzyme that lacks glycosidase activity. Several single nucleotide polymorphisms (SNPs) may cause enzyme inactivation with different racial distribution. This study aimed to determine the frequency of these...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011